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ABSTRACT

Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied
extensively in a number of previous works. However, relatively a fewer number of studies have con-
sidered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law
fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law
fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed frac-
tional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been
studied with power law index set to 0.5,1.0 and 1.5. The flow patterns, viscosity distributions and veloc-
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ity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are
found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied,

including the Newtonian cases.

1. Introduction

Shear flows in cavities generated by the motion of one or
more bounding walls have been the subject of numerous
studies (e.g. Ghia, Ghia, and Shin 1982; Gupta, Manohar,
and Stephenson 1983; Peric, Kessler, and Scheuerer 1988;
Kondo, Tosaka, and Nishimura 1991; Huser and Biringen
1992; Sundaresan et al. 1998; Aydin and Fenner 2001;
Sahin and Owens 2003; Zhang 2003; Bruneau and Saad
2006; Pasquim and Mariani 2008; Heaton 2008; Kalita
and Gupta 2010; Patil, Lakshmisha, and Rogg 2006;
Bustamante et al. 2011; Guo et al. 2014; Backx and
Wirz 1975; Freitas et al. 1985; Koseff and Street 1984;
Ku, Hirsh, and Taylor 1987; Iwatsu et al. 1989; Huang
et al. 1992; Arnal et al. 1992; Cantaloube and Le 1992;
Deshpande and Shankar 1993; Jordan and Ragab 1994;
Cortes and Miller 1994; Yeckel, Smith, and Derby 1997;
Albensoeder, Kuhlmann, and Rath 2001; Guermond
et al. 2002; Sheu and Tsai 2002; Albensoeder and
Kuhlmann 2005; De, Nagendra, and Lakshmisha 2009;
Yau, Badarudin, and Rubini 2012; Siegmann-Hegerfeld,
Albensoeder, and Kuhlmann 2013; Tang et al. 2013;
Dong et al. 2014; Verstappen et al. 1994; Deshpande and
Milton 1998; Leriche, Gavrilakis, and Labrosse 2000;
Paramane and Sharma 2008; De Vicente et al. 2011; Darr
and Vanka 1991; Jyotsna and Vanka 1995; Gonzalez et al.
2011; Jyotsna and Vanka 1996; Glowinski, Guidoboni,

and Pan 2006; Shinn, Goodwin, and Vanka 2009; Bell
and Surana 1994; Neofytou 2005; Yapici, Karasozen, and
Uludag 2009; Grillet et al. 1999; Gao and Liu 2009; Haque
et al. 2012; Mendu and Das 2012; Li et al. 2014). The
widely studied case is the flow generated by the motion of
the top wall of a square cavity in which a primary recir-
culating eddy and two smaller corner eddies at the bot-
tom left and bottom right corners are generated. For New-
tonian fluids, bench-mark solutions of two-dimensional
(2D) flow in a square cavity have been published by
several researchers (e.g. Ghia, Ghia, and Shin 1982;
Gupta, Manohar, and Stephenson 1983; Peric, Kessler,
and Scheuerer 1988; Kondo, Tosaka, and Nishimura 1991;
Huser and Biringen 1992; Sundaresan et al. 1998; Aydin
and Fenner 2001; Sahin and Owens 2003; Zhang 2003;
Bruneau and Saad 2006). A number of studies for three-
dimensional (3D) flow in a cube driven by the top wall
have also been published (e.g. Backx and Wirz 1975;
Freitas et al. 1985; Koseff and Street 1984; Ku, Hirsh,
and Taylor 1987; Iwatsu et al. 1989; Huang et al. 1992;
Arnal et al. 1992; Cantaloube and Le 1992; Deshpande
and Shankar 1993; Jordan and Ragab 1994; Cortes and
Miller 1994; Yeckel, Smith, and Derby 1997; Alben-
soeder, Kuhlmann, and Rath 2001; Guermond et al. 2002;
Sheu and Tsai 2002; Albensoeder and Kuhlmann 2005;
De, Nagendra, and Lakshmisha 2009; Yau, Badarudin,
and Rubini 2012; Siegmann-Hegerfeld, Albensoeder, and
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Kuhlmann 2013; Tang et al. 2013; Dong et al. 2014; Ver-
stappen et al. 1994; Deshpande and Milton 1998; Leriche,
Gavrilakis, and Labrosse 2000), illustrating the rich 3D
flow structures that are generated by the walls in the
spanwise direction and by the instabilities of the curved
streamlines. It is seen that on the bottom wall, streamwise
vortical structures akin to Taylor-Goertler vortices are
generated after a critical Reynolds number is exceeded. In
addition, the flow becomes progressively more complex,
eventually becoming unsteady and turbulent (Tang et al.
2013; Dong et al. 2014; Verstappen et al. 1994). The rect-
angular shape has been the most widely studied geome-
try, and has become a standard problem for development
and validation of computational algorithms and codes. A
smaller number of studies have been performed on cavi-
ties of other shapes, such as trapezoidal (Paramane and
Sharma 2008; De Vicente et al. 2011; Darr and Vanka
1991), triangular (Paramane and Sharma 2008; Jyotsna
and Vanka 1995; Gonzdilez et al. 2011), semi-circular
(Jyotsna and Vanka 1996; Glowinski, Guidoboni, and Pan
2006) and other complex shapes (Shinn, Goodwin, and
Vanka 2009). All these studies have assumed a Newto-
nian behaviour for the fluid with the viscosity assumed
to be constant in the flow domain.

When the fluid behaves as non-Newtonian, the viscos-
ity is no longer just a fluid property but also depends on
the local strain rate. This brings additional nonlinearity
to the flow, and consequent complexity to the computa-
tional algorithm. Locally, the strain rate can vary consid-
erably because of the changes in the velocity field, such as
in the driven cavity with multiple vortices. The fluid can
be shear thickening or shear thinning, or may behave as
a viscoplastic with a yield stress. Several nonlinear stress
versus strain-rate relations have been published in litera-
ture, with the power-law variation being the most com-
mon for viscous non-Newtonian fluids.

There have been several studies reporting non-
Newtonian flow in a 2D square cavity (e.g. Bell and
Surana 1994; Neofytou 2005; Yapici, Karasozen, and
Uludag 2009; Grillet et al. 1999; Gao and Liu 2009;
Haque et al. 2012; Mendu and Das 2012; Li et al. 2014;
Syrakos, Georgiou, and Alexandrou 2013; Prashant and
Derksen 2011; Sanchez 1998; Mitsoulis and Zisis 2011;
Vola, Boscardin, and Latché 2003; Elias, Martins, and
Coutinho 2006) for power law fluids, and other types,
including Bingham fluids. Bell and Surana (1994) com-
puted the flow in the driven cavity using a p-version
least-squares finite-element formulation (LSFEF) of 2D,
incompressible, non-Newtonian fluid flow under isother-
mal and non-isothermal conditions. A power-law model
for the non-Newtonian viscosity was used. Velocity pro-
files and streamlines for different values of the power
law coefficient greater than and less than unity were

presented. Neofytou (2005) developed a numerical
method using QUICK (Leonard 1981) and the SIMPLE
method (Patankar and Spalding 1972) for solving non-
Newtonian viscous flows. The non-Newtonian models
employed are the power law, Quemada, Bingham and
Casson models appropriate for viscous and viscoplastic
fluids. From the parametric study of the shear-thickening
and shear-thinning effects on the flow it was observed
that for both shear-thinning and shear-thickening fluids,
increasing Reynolds number causes higher velocity gra-
dients and subsequent moving of the centre of the main
vortex towards the lid. The more shear-thinning the fluid
is the closer is the centre of the main vortex to the upper
right edge.

Yapici, Karasozen and Uludag (2009) used a
collocated-grid finite volume method with the SIMPLE
algorithm (Patankar and Spalding 1972) and momentum
interpolation, to investigate the behaviour of a Oldroyd-B
viscoelastic fluid (in this model the steady shear viscosity
is Newtonian) in a 2D lid-driven cavity with the top
wall moving in x direction. A non-uniform grid with
305 x 305 finite volumes was used. The convection
and diffusion terms were discretised with second-order
accuracy while first-order upwind scheme was used to
calculate the viscoelastic stresses. They investigated the
effect of Reynolds number (Re = 0, 100 and 400) and
Weissenberg number (Wi from 0 to 1) and plotted Wi
versus the centre of the main vortex for Re = 100 and
400. For a fixed Reynolds number, the magnitude of the
minimum horizontal velocity on the vertical centreline
decreased in its maximum magnitude with increase in
the Weissenberg number. At low Reynolds numbers, the
size of secondary eddies at the bottom corners decreased
with increasing Wi, while at moderate Reynolds number
(e.g. Re = 400) the two secondary vortices first increased
with increasing Wi and merged into one big secondary
vortex when Wi = 0.3. However, further increase in Wi
made the vortices again separate and their size decreased.
Values of the normal stress difference near the top wall
are also presented.

Grillet et al. (1999) simulated the non-Newtonian
Stokes flow in a square cavity at low Reynolds number,
taking into account the resolution of the singularity at
the two corners. Their approach of resolving the singu-
larity was through a leakage flow at the top right and top
left corners. The stresses were split in a primary compo-
nent proportional to the strain rate, and an elastic com-
ponent given by a polymer model. The Stokes equations
were solved by a convergent and highly accurate mixed
finite element technique. Their work was motivated by
the desire to understand the viscoelastic instabilities in
recirculation flows. The effects of polymer stresses on the
flow kinematics and positions of the vortex centres and



the effects of the geometric aspect ratio of the cavity were
studied.

Gao and Liu (2009) developed a second-order accurate
hybrid finite volume and finite element code, and applied
it to study the incompressible non-Newtonian fluid flow
in a 2D lid-driven cavity. The momentum equations were
discretised by a cell-centred finite volume method while
the pressure Poisson equation was discretised by a vertex-
based finite element. The fractional step pressure pro-
jection was used to resolve the pressure-velocity cou-
pling. The flows at Reynolds number of 100 for values
of power-law index n = 0.5, 1.0 and 1.5 were computed.
As the power law index n increased from 0.5 to 1.5,
the main vortex centre was seen to shift from the top
downstream corner towards the cavity centre. Also as n
increased from 0.5 to 1.5, the size of the secondary vor-
tex at downstream bottom corner increased considerably
while the upstream bottom eddy increased only slightly.
They also observed that the horizontal velocity on the ver-
tical centreline for n = 0.5 is much smaller than that of
n=15.

Haque et al. (2012) studied the conditions for sta-
bility of flow of a non-Newtonian fluid in a 2D lid-
driven cavity. The viscosity was modelled by the Car-
reau model and the flow in square and shallow cavities
of aspect ratio of 0.25 were modelled. They presented
results for various power indices from 0.4 to 1.4 and a
time constant A =1, 10 and 100. A base flow solution was
first obtained by solving the discretised continuity and
momentum equations using Newton-Raphson iterations.
The solutions were then substituted into a perturbation
equation and the stability behaviour was studied. In gen-
eral, shear-thickening effects were seen to stabilise the
flow, while shear-thinning created instabilities at lower
Reynolds numbers. At the lowest values of n considered,
the critical Reynolds number increased again. Further,
an intermediate range of values of the power index n at
which the instability mechanism is unaffected by non-
Newtonian effects was observed.

Mendu and Das (2012) used the Bhatnagar-Gross-
Krook (BGK) single-time approximation (Bhatnagar,
Gross, and Krook 1954) Lattice Boltzmann Method
(LBM) to study the flow of a power-law fluid in a driven
cavity with both top and bottom walls moving. They stud-
ied different configurations by setting the two walls mov-
ing in the same or in the opposite direction with different
velocities. A 257 x 257 lattice grid was used and combi-
nations of three values of the power-law index # (0.5, 1.0
and 1.5) and three Reynolds numbers (100, 400 and 1000)
were computed. Centreline velocities as well as the loca-
tions of the vortex centres are reported. The drag coeffi-
cient of the moving lid was found to increase with increas-
ing n, but was not sensitive to the moving directions of
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the two lids. For parallel walls moving at a fixed Reynolds
number, the two main vortices moved towards the centre
of the cavity with increasing value of the index #. For anti-
parallel wall motion with n = 1 and Re = 1000, two small
secondary vortices were observed at the two corners close
to the stationary walls; however, the tendency of form-
ing these secondary vortices decreased with increasing
value of the power law index. Recently, Li et al. (2014)
used a Multi-Relaxation-Time (MRT) LBM method with
D2Q9 model to study the flow of a power law fluid in a
2D lid-driven cavity using a grid size of 256 x 256 lattice
points. Reynolds numbers from 100 to 10000 and power-
law index from 0.25 to 1.75 were considered. Streamlines,
velocities on horizontal and vertical centre lines and vor-
tex centres are presented for all the cases. The value of
the primary stream function increased with Re for Re less
than 3500 but decreased at higher Reynolds numbers. For
a fixed power-law index close to one, the flow structures
with power-law fluids were seen to be similar to those
for a Newtonian fluid. However, noticeable differences
between the flow structures with power-law fluids and of
a Newtonian fluid were observed for other cases. For a
fixed Reynolds number, the power-law index showed a
significant influence on the number and the strength of
vortices in the cavity.

Syrakos, Georgiou, and Alexandrou (2013) solved
the creeping flow of a Bingham plastic fluid in a lid-
driven cavity using the Papanastasiou regularization
(Papanastasiou 1987) and the finite volume method com-
bined with a multigrid algorithm. Results are presented
for Bingham numbers in the range 0-1000. Their results
compare favourably with the results of finite-element
and the finite-difference methods. The convergence was
accelerated considerably with a multigrid algorithm. The
lid-driven cavity flow has also been used as a test case for
Bingham flows by Prashant and Derksen (2011); Sanchez
(1998); Mitsoulis and Zisis ( 2011); Vola, Boscardin,
and Latché (2003); Elias, Martins, and Coutinho (2006),
amongst others.

The 3D flow of a Newtonian fluid in a driven cavity
(cube) driven by the top wall has also been the subject
of a large number of numerical studies. Interest in such
studies dates back to 1975 (Backx and Wirz 1975), and
has been maintained steadily for the past 40 years. (Ref-
erences (Backx and Wirz 1975; Freitas et al. 1985; Koseff
and Street 1984; Ku, Hirsh, and Taylor 1987; Iwatsu et al.
1989; Huang et al. 1992; Arnal et al. 1992; Cantaloube
and Le 1992; Deshpande and Shankar 1993; Jordan and
Ragab 1994; Cortes and Miller 1994; Yeckel, Smith, and
Derby 1997; Albensoeder, Kuhlmann, and Rath 2001;
Guermond et al. 2002; Sheu and Tsai 2002;
Albensoeder and Kuhlmann 2005; De, Nagendra, and
Lakshmisha 2009; Yau, Badarudin, and Rubini 2012;
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Siegmann-Hegerfeld, Albensoeder, and Kuhlmann 2013;
Tang et al. 2013; Dong et al. 2014; Verstappen et al. 1994;
Deshpande and Milton 1998; Leriche, Gavrilakis, and
Labrosse 2000) are selected to cite some relevant works
on 3D flow in a cube.) There have been a variety of tech-
niques used to compute essentially the same flow, albeit
with different accuracy, grid, and Reynolds numbers.
Finite volume methods (Freitas et al. 1985; Koseff and
Street 1984; Iwatsu et al. 1989; Jordan and Ragab 1994),
finite-element methods (Yeckel, Smith, and Derby 1997;
Guermond et al. 2002), spectral methods (Ku, Hirsh, and
Taylor 1987; Albensoeder, Kuhlmann, and Rath 2001;
Albensoeder and Kuhlmann 2005), velocity vorticity
methods (Huang et al. 1992) and Lattice Boltzmann
methods (De, Nagendra, and Lakshmisha 2009; Tang
et al. 2013; Dong et al. 2014) have been used. The pri-
mary features observed are nearly the same in all these
studies. At low Reynolds numbers, the flow is similar to
the flow in a 2D cavity, except for the boundary layers on
the spanwise walls (if the spanwise direction is periodic,
exactly 2D solutions are obtained). The central plane
consists of a primary eddy and two secondary eddies in
the right bottom and bottom left corners. One unique
feature of 3D analyses is the capture of 3D structures even
in a nominally 2D (i.e. periodic) geometry. At reasonably
high Reynolds numbers, it has been observed that the
recirculating primary eddy generates centrifugal insta-
bilities (Albensoeder, Kuhlmann, and Rath 2001), and
Taylor-Goertler-like (TGL) vortices are formed near the
bottom walls (Guermond et al. 2002). Freitas et al. (1985)
have applied a finite volume code REBUFEFS to study the
lid-driven 3D cavity flow at Re = 3200 and compared
simulation results with their previous experiments. They
used a 32 x 32 x 45 grid and the SIMPLE algorithm
with QUICK scheme and solved only half of the cavity
by assuming the flow to be symmetric about the middle
plane. They were able to capture the TGL vortices also
found in the experiments. The size and the location
of those vortices were observed to be time dependent.
Mean velocities on the central lines of the symmetry
plane were satisfactorily compared with Laser Doppler
Velocity (LDV) measurements at Re = 3300.

Jordan and Ragab (Jordan and Ragab 1994) studied
the unsteady Newtonian flow in a cavity with 3:1 span-
wise aspect ratio for Reynolds numbers of 5000, 7500
and 10000. For the largest Reynolds number, a subgrid
scale model was used for the unresolved scales of turbu-
lence. The LES results were also compared with exper-
iments, and good agreement was obtained. A GAMM
conference on 3D unsteady viscous flows was conducted
in 1992, with one of the candidate problems being the
flow in a driven cube. Arnal et al. (1992) studied the
unsteady flow in a cube at Re = 3200 using a finite volume

multigrid method on a co-located grid. The spatial
resolution was found to be much more important than
the temporal resolution in determining the instantaneous
flow field. The grid used was coarse (32 x 32 x 96) for
the full cavity. Iwatsu et al. (1989) used a 3D numer-
ical technique to integrate the time-dependent Navier-
Stokes equations. The 3D flow structure is presented in
detail for several Reynolds numbers. It was found that
the flow is steady at low Reynolds numbers, but becomes
unsteady past Re = 2000. Due to the end walls, the flow
was seen to be 3D even at low Reynolds numbers, with the
appearance of Taylor-Goertler vortices at high Reynolds
numbers.

Recently, Siegmann-Hegerfeld, Albensoeder, and
Kuhlmann (2013) conducted an experimental and
numerical investigation of the 3D flow in a cavity of
width-to-height ratio of 1.6, with a span ratio of 10.85.
Increasing the Reynolds number gradually led to the
onset of 3D motion in a continuous manner, compared
with the predictions of a sudden onset of three-dimen-
sionality. This was explained as a consequence of
the ubiquitous spanwise walls. A good agreement
between experiments and numerical simulations was
obtained.

In addition to the solution of the continuum-based
Navier-Stokes equations, the mesoscopic approach of the
LBM has also been used to study 3D flow in a cube.
The findings on the flow are nearly the same as those
from the continuum method. We refer to works by De,
Nagendra, and Lakshmisha (2009), Tang et al. (2013) and
Dong et al. (2014), who used multi-relaxation time and
single-relaxation time LBM. The LBM simulations com-
pared well with the Navier-Stokes solutions. The LBM
method is an explicit, highly parallel method and does
not involve any solution of pressure equation as in other
algorithms. Tang et al. (2013) combined the LBM with a
curvilinear coordinate and used both physical and com-
putational spaces to predict the 3D flow.

Several other works have also studied the flow in a
driven cube. Guermond et al. (2002) studied the impul-
sively started 3D flow in a 1:1:2 cavity at a Reynolds num-
ber of 1000. The initial evolution of the flow was com-
puted as well as measured, and was found to be sensi-
tive to the initial perturbations. Three-different ways of
starting the motion of the top wall were studied exper-
imentally and results were reproduced by the numer-
ical simulations. Sheu and Tsai (2002) used a finite-
element-based procedure with tri-quadratic elements
and a mixed formulation. The linear equations were
solved with BICGSTAB solver, and upstream biased for-
mulation was used for achieving stability. The spiralling
motion in the spanwise direction was characterised in
detail.



When the flow Reynolds number is high, the unsteady
flow in the cube becomes chaotic and eventually turbu-
lent. Several researchers have measured and computed
the turbulent flow in a driven cavity. Koseft and Street
(1984) made measurements in a cavity of spanwise dis-
tance in a cavity of span three times the height and at a
Reynolds number of 10,000. The flow visualization was
accomplished using thymol blue technique and the veloc-
ities were measured using LDV. The flow was observed to
consist of 3D features, corner eddies and Taylor-Goertler-
like vortices. Deshpande and Milton (1998) simulated
two Reynolds numbers (Re = 3200 and 10,000) resolv-
ing all the turbulence scales. The grid used had 84 x
84 x 84 nodes. The velocity and dissipation spectra were
used to compute the Kolmogorov scales in the flow. The
Kolmogorov scales in the central core were observed to
attain larger values in the central core compared with
those in the top wall region. Verstappen et al. (1994) per-
formed direct numerical simulation (DNS) of the 3D flow
in a cube at Re = 3200 and Re = 10,000. Different spa-
tial discretization schemes were tested and results were
seen to reproduce the experimentally observed Taylor-
Goertler-like vortices. A similar DNS was performed
by Leriche, Gavrilakis, and Labrosse (2000) using a
Chebyshev spectral method. The procedure was imple-
mented on a 16-processor NEC machine and high-
resolution DNS were performed. The same features
observed in other investigations were also seen.

From the above literature survey, we observe that
except for an isolated study of power-law fluid on a
coarse grid (Reddy and Reddy 1992) and a study of Bing-
ham plastic fluid of Re = 1 and 1000 (Elias, Martins,
and Coutinho 2006) there have been no systematic stud-
ies of the 3D non-Newtonian flow in a cubical enclo-
sure driven by the top wall motion. Three-dimensional
flows are obviously much more computationally inten-
sive, and require considerably more resources of both
storage and CPU time. We are not aware of any studies
with fine enough grids that have reported bench-mark
quality velocity profiles which can be used for future
comparisons. Fortunately, with the development of pow-
erful parallel computers, it is now possible to perform
large-scale, 3D flow calculations in reasonable comput-
ing times. One such parallel computing platform avail-
able on desktops to most users is the Graphical Process-
ing Unit (GPU). In recent years, it has been increasingly
recognised that the data parallel features of a GPU can
be effectively exploited to perform large-scale scientific
computations to achieve greater speeds. Recently, a con-
siderable amount of interest has been generated for the
use of the GPU as a data parallel computing platform. A
recent review of implementation of computational fluid
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dynamics codes on GPUs has been given in Kirk and Hwu
(2012), which refers to a large numbers of papers. In the
past 10 years, many researchers have developed/ported
CFD software to GPUs and found significant speed-ups
(10-50 times depending on algorithm, approach and
implementation) over a single core CPU. The GPU is
a highly parallel, multi-threaded, many-core processor
with a large computational horse power and high mem-
ory bandwidth. Each GPU consists of many streaming
multiprocessors (SMPs). Thus, GPUs offer promise of a
super computer (in a single box) with theoretical com-
puting speed of a couple of Teraflops.

In this paper, we describe the application of a 3D
Navier-Stokes solver implemented on a GPU (Sanders
and Kandrot 2010; NVIDIA 2011) to compute gen-
eralised Newtonian fluid flows. The solver employs
the well-known Harlow-Welch fractional step algorithm
(Vanka 2013) for discretization of the governing equa-
tions. A considerable speedup is obtained between the
CPU and the GPU, depending on the size of the prob-
lem; the bigger the size of the problem, the greater is the
speedup. In this paper, this GPU-based computer code is
applied to perform fine grid computations of the steady-
state flow at moderate Reynolds numbers for two values
of the power-law index. The results are presented in terms
of streamline patterns and velocity profiles at the cen-
tre lines. Tables of the velocity data at selected lines are
given.

2. Governing equations and numerical method

2.1. Governing equations

The governing equations for a steady incompressible flow
in the absence of body forces can be written as:

v. (pa) — (1)

p[%qL(a-v)a}:—ijLv-r )

Where z is the deviatoric part of the Cauchy stress ten-
sor, p is density, p is pressure and u=u;é; is the velocity vec-
tor in the Cartesian system. The governing Equations (1)
and (2) are solved for a constant density flow in a unit
cube with top wall moving at a constant velocity u; =
U = 1 m/sinxdirection as shown in Figure 1. At all other
walls, the velocities are zero and no-slip conditions are
applied.
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Figure 1. Geometry of the lid-driven cubic cavity.

2.2. Power-law model

In this paper, we have modelled the non-Newtonian fluid
by a power law model. The deviatoric part of the Cauchy
stress tensor t is written as:

3)

[

=2u

[lS)

where p is the effective dynamic viscosity and ¢ is strain

rate tensor defined as:
1 (Ou; OJu;j
i=\—+— 4
81 2<8xj+8x,-> ()

In the power-law model, the effective viscosity is given
by the following expression:

n—1

(5)

= polé|" " = M0|\/2<9ij8ij|n_1 = Mo|28ij8ij

where g is the consistency index and #n is the flow
behaviour index of the non-Newtonian fluid. n =1 corre-
sponds to a Newtonian fluid, while n > 1 and n < 1 repre-
sent shear-thickening and shear-thinning fluids, respec-
tively. For a power-law model and the driven cavity flow,
the Reynolds number can be defined as

UL
Re: IO =

s M0|28ij8ij
pUL

n—1
2 277 Mo
19 19
“O[z(za—ﬁ) +2(3%) }

where U is the lid velocity and L is the represen-
tative dimension of the cavity. We have also non-
dimensionalised all variables in Equations (1) and (2) and
thus consider the flow in a cube of unit dimensions and
unity top wall velocity.

pUL

n—1

pUZ—nLn

(6)

2.3. Numerical method

An in-house code, CUFLOW (Vanka, Shinn, and Sahu
2011; Shinn 2011; Chaudhary 2011), that was recently
developed to solve the governing Equations (1) and (2)
for a Newtonian fluid was modified to include non-
Newtonian relations in the form of a generalised Newto-
nian fluid. CUFLOW is a general purpose code for simu-
lating laminar and turbulent flows in complex domains.
CUFLOW employs Cartesian grids combined with the
immersed boundary method to integrate the 3D unsteady
incompressible Navier-Stokes equations. The fractional
step method is employed to solve the continuity and
momentum equations. We provide below brief details of
the algorithm. Complete details are available in Shinn
(2011) and Chaudhary (2011).

The velocities are first determined by solving the
momentum Equations (2) without the pressure gradient
terms. The discretised equations are derived in the finite-
volume framework by central differencing both the con-
vection and diffusion terms on a collocated grid. For the
temporal differencing, the second-order accurate Adams-
Bashforth scheme is used. Therefore, in the first-step, the
discretised equations in the absence of pressure gradient
terms become:

12,‘ — M,‘r 3 1 _

In the next step, the continuity equation is transformed
to a pressure-Poisson equation given by

p dd; 9 (ap\™ ®
At 0x; B 0x; \ 0x;

Equation (8) for pressure is solved efficiently by a
V-cycle multi-grid method, and red-black Gauss-Seidel
SOR (with over-relaxation parameter of 1.6). After com-
puting the solution for pressure at r + 1 time step from
Equation (8), the velocity components at r 4 1 time step
are computed using the pressure field. For steady state cal-
culations, the algorithm is marched in time until desired
convergence to steady state is achieved. In the current ver-
sion of CUFLOW, an unstructured one-dimensional (1D)
data structure is employed in order to simulate a com-
plex geometry. CUFLOW has been successfully used to
perform LES/DNS of turbulence in circular and trian-
gular ducts, to calculate the effects of a micro ramp on
the film cooling effectiveness (Shinn 2011), and to com-
pute the flow and heat transfer in the mould region of
an actual continuous caster of steel in the presence of a
magnetic field (Chaudhary 2011). In the present study,
CUFLOW has been extended to non-Newtonian fluids



and calculations for power-law fluids in the lid-driven
cube of Figure 1 have been conducted.

2.4. GPUimplementation

The above algorithm has been programmed to run
entirely on a GPU. The Nvidia Tesla K20x GPU has been
observed to provide a factor upwards of eighteen speed
up over serial execution on an 8 core Intel Xeon E5-
2650v2 2.6 GHz CPU. GPU programming can be done
in several different languages such as OpenCL, CUDA
and OpenGL. Of these, OpenCL and CUDA are most
commonly used. We have implemented the algorithm in
CUDA Fortran. CUDA Fortran is supported by the PGI
Fortran compiler when the filename uses a .cuf exten-
sion. The grid generation, initial conditions and bound-
ary conditions are first created on CPU and data are then
copied to GPU. For each computational step, a separate
GPU kernel is launched. The flow fields from the GPU are
copied periodically to the CPU for plotting and interro-
gation. The variables are all stored as 1D arrays. The GPU
launches data in blocks of pre-specified sizes and each
block is assigned to one SMP. The SMP launches threads
which are then assigned to kernels. A kernel is a set of
instructions assigned to one thread to be executed inde-
pendent of other data. Thus, GPU is a data parallel com-
puter, operating same instructions in parallel on multi-
ple data. As mentioned earlier, CUFLOW uses an explicit
algorithm for momentum equations and a red-black SOR
algorithm for the pressure-Poisson equation. Both these
are data parallel algorithms and easily map to a GPU. As
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a result we have observed a gain in computational speed
upwards of 18 over serial running on an Intel Xeon E5-
2650v2 2.6-GHz CPU.

3. Code validation

CUFLOW has been previously validated in a number
of flow problems, including DNS of turbulent flow in
square ducts, MHD flow in channels and rectangular
ducts (Chaudhary 2011), continuous casting of steel, and
in film cooling flows with vortex generators (Shinn 2011).
The current version of CUFLOW uses a collocated grid
(versus a staggered grid), and hence was validated again
for flow in a driven cube with a Newtonian fluid against
previous simulations and simulations of Ku, Hirsh, and
Taylor (1987). Figure 2 shows the comparison of the
velocity profiles at mid-span along horizontal and vertical
lines. The solution of Ku et al. was obtained with a spec-
tral technique and our simulations were performed with
a 128 x 128 x 128 uniform finite volume grid. Several
coarser grids were also computed, but the 128 x 128 x
128 grid was used in all simulations to get high accuracy.
Since the code used a GPU, the computations were quite
fast and did not require much GPU time. The calculations
were performed by marching in time to steady state, and a
steady state was judged by successive changes of velocities
to be less than 1.0 x 107> for a nominal value of 1.0.

To validate the incorporation of the non-Newtonian
viscosity and stress terms, we computed the 2D driven
cavity flow of a power law fluid using the 3D code for
a rectangular parallelepiped with aspect ratio 1:1:8. The

0.3
0.2
0.1

0.2
021 —— Grid 192° ]
0.3} ==== Grid 128 ]
04t = Grid 64° ]
O Kuetal.
_05 TR T S N S S T N SRS S S N BRI S
0 0.2 04 0.6 0.8 1
X

(b)

Figure 2. Comparison of velocity profiles in a lid-driven cube, Re = 1000 with Ku, Hirsh, and Taylor (1987). (a) x-velocity along vertical

centreline. (b) y-velocity along horizontal centreline.
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Figure 3. Horizontal and vertical velocity profiles in the mid-span plane, compared with 2D results of non-Newtonian flow in a driven
cavity. (a) Velocity along the vertical centreline. (b) Velocity along the horizontal centreline.

results on the symmetry plane (z = 4), far from the
solid boundary, are compared with existing 2D results
from the literature. The flow Reynolds number is 100
and power-law index is 0.5 which corresponds to a shear
thinning fluid. A uniform grid of 128 x128 x 512 in
(x, y, z) directions is employed with an element size of
Az = 2Ax = 2Ay. In Figure 3, the x-direction velocity
profile on the vertical centreline and y-direction veloc-
ity profile on the horizontal centreline of symmetry sur-
face are plotted against the 2D simulation results of other
investigators. The 2D results shown in Figure 3 include
the results obtained by a variety of algorithms. Bell
and Surana (1994) employed the finite element method,
Neofytou (2005) used the finite volume method, and Li
et al. (2014) and Mendu (Mendu and Das 2012) applied
the Lattice Boltzmann Method (LBM). The excellent
agreement among all the calculations validates the accu-
racy of non-Newtonian version of the CUFLOW code.

4, Results and discussion

In the present work, flow at three different Reynolds num-
bers (Re = 100, 400 and 1000) was investigated. The
different Reynolds numbers were obtained by modify-
ing the consistency index/o. The computed effective vis-
cosity p is trapped between 0.1po and 10u. For each
Reynolds number, three values of the non-Newtonian
flow behaviour index were used (n = 0.5, 1.0 and 1.5)
that represent shear-thinning, Newtonian and shear-
thickening behaviours, respectively. The flow structure,
velocity distribution and velocity values for these nine
simulations are presented below.

4.1. Re=100

As shown in Equation (7), to obtain Re = 100 with fixed
fluid density, top wall shear velocity and domain length,
the consistency index py was set to be 0.01. For the New-
tonian fluid case (n = 1) the fluid dynamic viscosity was a
constant and equals the consistency index. However, for
the shear-thinning and shear-thickening fluids, the local
effective viscosity varies considerably as a result of local
strain rates tensor. The flow was found to be steady and
a converged flow distribution was obtained by marching
in time. Figure 4 shows streamlines and contours of vis-
cosity for the shear-thinning case (n = 0.5) at different z
planes. In these figures, we observe one large eddy centred
at a region close to the right side of the top moving wall.
In the bottom two corners of the cavity, minor vortices
may be present in very small regions below the grid reso-
lution used here (Ax = Ay = 1/128) but are not captured
in these simulations. High-viscosity regions are observed
close to the bottom front and back edges due to the slow
motion of the fluid. In addition, Figure 6(d)-(f) show that
at region (x, y) = (0.3, 0.8) a relatively high viscosity spot
(1 = 0.04-0.05) is formed locally, indicating that there
exists a local low shear region. It is also noticeable that
in the bottom corner a high viscosity triangular region is
formed and is larger close to the side walls, shrinking as
we move towards the centre plane (z = 0.5). The size of
the region is almost the same for planes that are 0.2 away
from the side wall to the middle plane (z = 0.5). The ver-
tical side of the high viscosity triangular region (viscosity
greater than 0.09) shrinks from ~0.2 to ~0.1 as we move
from z = 0.05 to z = 0.5.

Figure 5 presents contours of viscosity and stream-
lines at different z planes for the shear-thickening case.
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Figure 4. Contours of viscosity and streamlines at different z planes: (a) z=0.05; (b) z=0.1; () z=0.2; (d) z=0.3; (€) z=0.4; (f) z= 0.5
for Re =100 and n = 0.5.

Figure 5. Contours of viscosity and streamlines at different z planes: (a) z=0.05; (b) z=0.1; (<) z=0.2; (d) z=0.3; (€) z=0.4; (f) z= 0.5
for Re=100and n =1.5.
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Figure 6. Contour plots of viscosity and streamlines in spanwise plane x = 0.5 for n = 0.5 (left) and n = 1.5 (right), Re = 100.

The corresponding viscosity contours indicate that for a
shear-thickening fluid the effective viscosity in much of
the cavity is below 0.02 which is two times the consistency
index. Very high viscosity regions were found at the top
frontand back edges due to the high shear (not seen in the
figure due to small region close the corner). The stream-
lines show that in contrast to the shear-thinning case, two
very small eddies are formed at the two bottom corners at
middle plane. Locally low viscosity (i < 0.01) regions are
found close to all the eddy centres, and the effective vis-
cosity of the fluid in the bottom half (y < 0.5) of the cavity
is lower than the consistency index f4o.

Figure 6(a) and (b) show contour plots of viscosity and
streamlines in the plane at x = 0.5 for n = 0.5 and n =
1.5, respectively. For n = 0.5, the results show that the
low viscosity regions are close to the top moving wall
(y = 1). The streamlines on the middle x plane for the
shear-thickening fluid (n = 1.5) are shown in Figure 6(b).
Both figures indicate that the flow at the side walls is
moving upwards. The viscosity contours for the shear-
thickening fluid indicate that the low viscosity region is

18 T T T T

relatively in the bottom part of the cavity and high vis-
cosity region is close to the top moving wall, as expected
from the computed shear pattern.

The computed relative viscosity u/uo on horizontal
and vertical centrelines of the symmetry plane is plotted
in Figure 7 (a) and (b), respectively. On the horizontal
centreline, the viscosity variation for shear thickening
fluid n = 1.5 is not very large and the maximum vis-
cosity happens at close to the downstream wall. Moving
from upstream wall towards the downstream wall, the
relative viscosity ratio first drops from 1.1 to 0.9 and
then increases to around 1.2 at the region close to the
downstream wall where shear rate is higher. However,
for the shear thinning fluid the maximum high relative
viscosity region (i /o = 1.6) is seen close to the left wall,
then it drops as we move towards the right wall, reaching
its minimum value at x = 0.85. It rises to around 1.1 in
the region close to the wall. The relative viscosity on the
vertical centreline for case n = 0.5 indicates that as we
traverse downward from the top wall (y = 1.0) the rela-
tive viscosity first increases from 0.5 to 2.0, and reaches

—n=0.5]]

0.41

0.2r

0 05 1 15 2 25

Figure 7. Relative viscosity variation on horizontal (left) and vertical (right) centrelines for n = 0.5 and n = 1.5, Re = 100.
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Figure 8. v velocity on horizontal centreline (left) and u velocity on vertical centreline (right) for Re = 100.

the maximum value at y = 0.75 and then it decreases to
1.3 at y = 0.45, and after that it increases again to 2.4 at
y=0.05. For n = 1.5, as we move from y=1.0to y = 0.7,
the relative viscosity decreases from 2.2 to 0.5, but slowly
increases and then decreases to another local minimum
value of 0.6 at y = 0.1. After that, moving down the cavity
the viscosity increases again.

The v velocity on horizontal centre line and u veloc-
ity on vertical centreline for different fluids are plotted in
Figure 8(a) and (b), respectively. The v velocity on hori-
zontal centreline shows that the peak v velocity increases
as n increases from 0.5 to 1.5, and the maximum v veloc-
ity for the Newtonian and shear-thickening fluids can be
twice that with n = 0.5. The minimum v velocity for
shear-thickening fluid can also be twice that of the shear-
thinning fluid. For the u velocity on the vertical centre-
line, the results also show that the magnitude of the peak
negative u velocity for n = 1.5 is slightly higher than
that of the Newtonian fluid but twice the value for shear-
thinning fluid with n = 0.5. The boundary layer for the
shear-thinning fluid is thinner at the top wall. Selected
points on Figure 8 are tabulated in Table 1. These values
can be used by others for their code validation and bench-
marking.

4.2. Re=400

The consistency index o was next set to be 0.0025 to
obtain the desired Reynolds number of 400 with the same
fluid density, top wall shear velocity and domain length
as the previous Reynolds number. For the Newtonian
fluid case (n = 1) the fluid dynamic viscosity was a con-
stant and equals the consistency index 0.0025. Figure 9
shows streamlines and contours of viscosity for the shear-
thinning case (n = 0.5) at different z planes. In these fig-
ures, similar to Re = 100 we observe only one large eddy
centred in the region close the right side of the top mov-
ing wall. As expected, high viscosity regions are observed

Table 1. v velocity on horizontal centreline and u velocity on
vertical centreline at Re = 100.

v velocity on horizontal centreline

X n=05 n=10 n=15

0.1 4.94E-02 1.14E-01 1.28E-01
0.2 7.26E-02 1.47E-01 1.57E-01
03 7.41E-02 1.30E-01 1.36E-01
0.4 5.79E-02 8.46E-02 8.79E-02
0.5 2.58E-02 1.50E-02 1.31E-02
0.6 -2.38E-02 —7.75E-02 -8.60E-02
0.7 -8.82E-02 -1.81E-01 -1.88E-01
0.8 -1.39E-01 —-2.43E-01 —-2.38E-01
0.9 -1.09E-01 -1.79E-01 -1.72E-01

u velocity on vertical centreline

y n=05 n=10 n=15

0.1 —-2.54E-02 -6.34E-02 -6.69E-02
0.2 -4.73E-02 -1.14E-01 -1.13E-01

03 -7.59E-02 -1.63E-01 -1.56E-01
04 -1.12E-01 —-2.02E-01 —-2.01E-01

0.5 -1.39E-01 —-2.14E-01 —-2.32E-01
0.6 -1.34E-01 -1.81E-01 —-2.26E-01
0.7 -9.53E-02 -9.82E-02 -1.43E-01
0.8 -3.22E-02 4.72E-02 7.80E-02
0.9 1.25E-01 3.58E-01 4.59E-01

close to the bottom front and back edges due to the slow
motion of the fluid. It can be seen that in most region
of the cavity the viscosity is in the range of 0.002-0.02.
The lowest viscosity region is seen at the top downstream
edge of the cavity which is similar to observation at
Re =100. Also, locally high shear regions are found in the
region close to (x, ¥) = (0.2, 0.8) in planes away from the
side walls. That local high viscosity regions have a viscos-
ity about five times the consistency index (o = 0.0025)
which is again similar to what we see at Re = 100. The flow
patterns at Re = 400 are similar qualitatively but differ in
the magnitudes of local viscosity and velocities.

Figure 10 plots contours of viscosity and streamlines at
different z planes for the shear-thickening fluid. The cor-
responding viscosity contours indicate that for a shear-
thickening fluid the effective viscosity is below 0.004
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Figure 9. Contours of viscosity and streamlines at different z planes: (a) z= 0.05; (b) z=0.1; () z=0.2; (d) z=0.3; (€) z=0.4; (f) z= 0.5

for Re =400 and n = 0.5.
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Figure 10. Contours of viscosity and streamlines at different z planes: (a) z= 0.05; (b) z=0.1; (<) z=0.2; (d) z=0.3; () z=0.4; (f) z= 0.5

for Re =400 and n =1.5.
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Figure 11. Contour plots of viscosity and streamlines in plane x = 0.5 for n = 0.5 (left) and n = 1.5 (right), Re = 400.

(around two times the consistency index) in most regions
of the cavity. Still as expected, very high viscosity regions
were found at the top front and back edges due to the high
shear and two very small eddies are formed at the two bot-
tom corners (low viscosity region) far from the side walls.
It is also seen that local low viscosity (1 < 0.002) regions
are found close to all the eddy centres, and the effective
viscosity of region in the bottom half (y < 0.5) of the cav-
ity is close to the consistency index 1o = 0.0025.

Figure 11(a) and (b) show the contour plots of viscosity
and streamlines in the plane x = 0.5 forn = 0.5and n =
1.5, respectively. For the shear-thinning fluid, the results
show that the low viscosity regions are close to the top
moving wall (y = 1). There are two local high viscos-
ity regions (4 > 619) at two spots symmetrical to the z
plane, (z, y) = (0.2, 0.64) and (0.8, 0.65). The streamlines
on the middle x plane for the shear-thickening fluid are
(n = 1.5) shown in Figure 11(b). For a shear-thickening
fluid, we see four vortices close to the two side planes.
The viscosity contour plot again shows that low viscos-
ity region is in the bottom part of the cavity and high
viscosity region is close to the top moving wall, but it is

noticeable that as one moves down from the top wall, a
low viscosity region is seen at the centre region of the
cavity.

The relative viscosity w/uo on horizontal and ver-
tical centrelines of the symmetry plane is again plot-
ted in Figure 12(a) and (b), respectively, for Re = 400.
On the horizontal centreline, the viscosity variation for
shear thickening fluid n = 1.5 ranges from 0.6 to 1.7.
Moving from left wall towards the right wall, the rel-
ative viscosity ratio first drops from 1.55 to 0.6 and
then slightly varies until it reaches x = 0.8. After that
it increases to a maximum of 1.7 at x = 0.9 which
is close to the right wall. For the shear-thinning fluid
(n = 0.5) the maximum high relative viscosity region
(/mo = 2.6) is seen close to the upstream side wall at
x=0.3.It then drops as we move towards the right wall to
reach a minimum at x = 0.97. Subsequently it increases
to around 0.9 in a region very close to the wall. A very
sudden drop of the relative viscosity was seen at region
0.7 < x < 0.8 which corresponds to the right side of the
main eddy where the flow is mainly moving downward.
The relative viscosity on the vertical centreline for case

Figure 12. Relative viscosity on horizontal (left) and vertical (right) centrelines for n = 0.5 and n = 1.5, Re = 400.
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Figure 13. v-velocity on horizontal centreline (left) and u velocity on vertical centreline (right) for Re = 400.

n = 0.5 shows that as we traverse downward from the top
wall (y = 1.0) the relative viscosity first increases from 0.2
to 2.5, and reaches the maximum value at y = 0.75. For
n = 1.5, as we move from y = 1.0 to y = 0.75, the relative
viscosity decreases from 2.5 to 0.6, then increases to 1.1
at the bottom wall region.

The v velocity profile on horizontal centre line and u
velocity profile on vertical centreline for the two differ-
ent fluids for Re = 400 are plotted in Figure 13(a) and
(b), respectively. The v velocity profile on the horizon-
tal centreline shows that the peak velocity increases as n
increases, and the maximum peak v velocity for the shear-
thickening fluid is closer to the upstream wall (x = 0) and
is twice that with n = 0.5. The lines clearly show that for
the shear-thinning fluid the downstream side peak veloc-
ity is much closer to the wall at x = 1. Comparing the loca-
tion of this negative peak velocity we see that the bound-
ary layer is slightly thinner for the shear-thinning fluid
(n = 0.5). This effect is not easily seen from the case at
Re = 100. For the u velocity on the vertical centreline, the
results also show that the magnitude of the peak negative
u velocity for n = 1.5 is slightly higher than that of the
Newtonian fluid but twice the value for shear-thinning
fluid with n = 0.5. The peak negative u velocity happens
at higher y for the shear-thickening fluid. Selected points
of Figure 13 were tabulated in Table 2.

4.3. Re=1000

We next consider an even higher Reynolds number of
1000. For this case, o was set to be 0.001. As before three
cases are considered with n = 0.5, 1.0 and 1.5. The results
for n = 1.0 matched quite closely with previous published
Newtonian fluid results. Here we present results for n =
0.5 and 1.5 and contrast them with results presented ear-
lier at Re = 100 and 400.

Figure 14 presents streamlines and contours of viscos-
ity at different constant z planes for the shear-thinning

Table 2. v velocity on horizontal centreline and u velocity on
vertical centreline at Re = 400.

v velocity on horizontal centreline

X n=05 n=10 n=15

0.1 1.04E-01 1.95E-01 2.19E-01
0.2 1.23E-01 1.97E-01 2.16E-01
03 1.11E-01 1.60E-01 1.75E-01
0.4 8.82E-02 115E-01 1.25E-01
0.5 5.87E-02 6.20E-02 5.83E-02
0.6 1.98E-02 -6.25E-03 -4.30E-02
0.7 -3.62E-02 -1.14E-01 -2.02E-01
0.8 -1.44E-01 -3.01E-01 -3.79E-01
0.9 -2.89E-01 -3.37E-01 -2.87E-01

v velocity on horizontal centreline

y n=05 n=10 n=15

0.1 -1.03E-01 -1.50E-01 -1.41E-01
0.2 -1.49E-01 -2.27E-01 -2.33E-01
03 -1.39E-01 -2.17E-01 -2.65E-01
0.4 -9.80E-02 -1.37E-01 -1.99E-01
0.5 -5.02E-02 -5.05E-02 -8.95E-02
0.6 -8.91E-03 134E-02 4.26E-03
0.7 2.56E-02 6.07E-02 7.06E-02
0.8 5.94E-02 1.06E-01 1.25E-01
0.9 1.07E-01 2.14E-01 3.42E-01

fluid. For Re = 1000 we again observe that close to the side
walls only one big eddy exists, but as we move towards the
centre a smaller eddy is formed in the right bottom cor-
ner. Because of the shear thinning property, the viscosity
is computed to be larger than 14o. As a result, these cor-
ner vortices are relatively weaker than those observed for
a Newtonian fluid. We also see that there are a few regions
inside the main interior domain where the computed vis-
cosity is again high. These regions have low shear and
therefore high viscosity. Figure 14(d), (e) and (f) show
that as the position of the plane moves away from the
left side wall, a local high viscosity region is developed in
region enclosed in the dashed square. We observe that at
the symmetry plane (z = 0.5) the local maximum viscos-
ity in the region surrounded by the dashed square can be
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Figure 14. Contours of viscosity and streamlines at different z planes: (a) z= 0.05; (b) z=0.1; () z=0.2; (d) z=0.3; () z=0.4; (f) z= 0.5

for Re =1000 and n = 0.5.

as much as 10 times the consistency index. This is again
a region of low shear but large velocities.

Figure 15 plots contour of viscosity and streamlines at
different z planes for the shear-thickening case. The cor-
responding viscosity contours indicate that for a shear-
thickening fluid the effective viscosity is below 0.002
which is two times the consistency index. A very high
viscosity region (not seen clearly) was found at the top
front and back edges due to the high shear. The stream-
lines show that in contrast to the shear-thinning case, two
small eddies are formed at the two bottom corners at the
planes far enough (z = 0.2) from the side walls. This is
similar to the observation for a Newtonian fluid. It is also
seen that local low viscosity (1 < 0.001) regions are found
close to the all the eddy centres.

Figure 16 shows the contour plots of viscosity and
streamlines in plane at x = 0.5 for n = 0.5 and n = 1.5,
respectively. For n = 0.5, the results show that there are
two high viscosity regions, (z, ) = (0.2, 0.8) and (z, y) =
(0.8,0.8), close to the top moving wall (y = 1). Compared
with the case of Re = 400, these two spots move upward
from z= 0.7 to z=0.8. In the middle x plane, the compu-
tations show swirling flow at the top corners close to the
top wall, which were not seen for case with Re = 100 or
400. The streamlines on the middle x plane for the shear-
thickening fluid (n = 1.5) are also shown in Figure 16. For
a shear-thickening fluid, we see four vortices close to the

two side planes. The viscosity contours indicate that the
low viscosity region is relatively in the middle part of the
cavity and high viscosity region is close to the top moving
wall. It also shows that slightly high viscosity region at the
bottom of the cavity, in the boundary layer.

The relative viscosity p/uo on horizontal and ver-
tical centrelines of the symmetry plane is plotted in
Figure 17(a) and (b), respectively, for the variable viscos-
ity cases. On the horizontal centreline, the viscosity vari-
ation for shear thickening fluid n = 1.5 is not very large.
However, for the shear thinning fluid the maximum rela-
tive viscosity can be more than nine times larger than the
consistency index jiy, and the minimum relative viscos-
ity can be 0.4. This indicates that ratio of local maximum
viscosity to the minimum viscosity along the horizontal
centre line for n = 0.5 can be as large as 36. The loca-
tion of the high viscosity region was seen at x = 0.2 which
agreed with the contour plot of viscosity in Figure 18(a).
The relative viscosity on the vertical centreline for case
n = 0.5 shows that as we traverse downward from the
top wall (y = 1.0) to the bottom wall, the relative viscos-
ity first increases from 0.02 to 4.4, reaches a maximum
value at y = 0.75 and then it decreases to 2 at y = 0.2. It
increases again to 2.8 at y = 0.15, eventually decreasing
at the bottom because of larger shear again. For n = 1.5,
as we move from y = 1.0 to y = 0.7, the relative viscos-
ity decreases from 3 to 0.4, but again slowly increases and
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Figure 18. v velocity on horizontal centreline (left) and u velocity on vertical centreline (right) for Re = 1000.

Table 3. v velocity on horizontal centreline and u velocity on
vertical centreline.

v velocity on horizontal centreline

X n=0.5 n=10 n=15
0.1 1.29E-01 2.40E-01 2.76E-01
0.2 1.23E-01 1.94E-01 2.29E-01
03 9.26E-02 1.25E-01 1.63E-01
0.4 5.84E-02 7.64E-02 1.14E-01
0.5 2.72E-02 3.74E-02 6.40E-02
0.6 -1.55E-03 3.75E-04 1.32E-03
0.7 —-3.13E-02 -4.32E-02 -9.57E-02
0.8 -6.82E-02 -1.43E-01 -3.09E-01
0.9 —-2.02E-01 —-4.19E-01 -3.96E-01
u velocity on vertical centreline

y n=0.5 n=10 n=15
0.1 -1.72E-01 -2.65E-01 -2.35E-01
0.2 -1.34E-01 -2.15E-01 -2.93E-01
03 -7.1ME-02 -9.23E-02 -1.66E-01
0.4 —2.97E-02 —-2.67E-02 —5.24E-02
0.5 -1.59E-03 7.64E-03 1.36E-02
0.6 2.07E-02 3.39E-02 5.58E-02
0.7 4.23E-02 6.14E-02 9.13E-02
0.8 6.68E-02 9.58E-02 1.25E-01
0.9 9.86E-02 1.56E-01 2.1E-01

Table 4. Vortex center location (x, y) on symmetry plane.

n Re =100 Re =400 Re =1000

n=05 (0.716, 0.815) (0.674, 0.605) (0.593, 0.485)
n=10 (0.619, 0.762) (0.623, 0.575) (0.594, 0.465)
n=15 (0.579, 0.763) (0.616, 0.610) (0.600, 0.496)

then decreases to another local minimum value of 0.5 at
y = 0.2. After that, moving down the cavity, the viscosity
increases again.

The velocities on horizontal and vertical centrelines
for the three different fluids are plotted in Figure 18.
The v velocity on horizontal centreline shows that the
peak velocity increases as n increases, and the max-
imum peak v velocity for the shear-thickening fluid
(n = 1.5) is closer to the upstream wall (x = 0) can be
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Figure 19. Vortex centre on the symmetry plane for all nine cases.

twice that with n = 0.5. These plots also show that for
shear thinning fluid (n = 0.5) the peak velocity is closer
to the side wall. For the u velocity on the vertical cen-
treline, the results also show that the peak u velocity for
n = 1.5 is slighter higher than that of the Newtonian fluid
but twice the value for shear-thinning fluid with n = 0.5.
The boundary layer for the shear-thinning fluid is thin-
ner at bottom wall. Selected points on the six lines in
Figure 18 were tabulated in Table 3. These trends are same
as observed for Re = 100 and Re = 400, but the values are
different.

4.4. Centres of the main vortices

It is interesting to monitor the movement of the main vor-
tex in the centre of the cavity as a function of the power
law index and the flow Reynolds number. Table 4 shows
all the centres of the main vortices in the symmetry plane
and Figure 19 shows the centres graphically. For Re = 100
and 400, as n increases from 0.5 to 1.5 the centre of the
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vortex moves from right wall towards the centre, while it
first moves down and then moves up. However, for Re =
1000, as n increases from 0.5 to 1.5 the x coordinate of the
centre moves from a place close to the centre towards the
right wall. In all of these cases, for fixed Re the lowest cen-
tre location can be reached when n = 1.0. The results also
show that the non-Newtonian effect on the location of the
centre of the vortex is more important when the Reynolds
number is low. As the Reynolds number increases, the
effect of n on centre location of the vortex is significantly
attenuated.

5. Conclusion

The 3D flow of a power-law fluid in a driven cube at
Re =100, 400 and 1000 for three values of the power law
index have been studied. The three Reynolds numbers are
seen to give the expected behaviour of shear-thinning and
shear-thickening fluids. The flow patterns, velocity pro-
files and viscosity distributions are as per expectations,
and show similar behaviour at the three Reynolds num-
bers. The 3D behaviour is reflected in Taylor-Goertler
like vortices in the corners along the spanwise direction.
Tables of the velocity distribution along the centrelines
are given for benchmarking of other studies. The key
observations of this study are the distributions of the vis-
cosity, the effects of the non-Newtonian behaviour on the
velocity profiles and the streamlines. In all the cases stud-
ied, steady flow was obtained.

Nomenclature

U moving wall speed, m/s

7 deviatoric part of the Cauchy stress tensor

p  density of the fluid, kg/m?

p pressure of the fluid, pa

u velocity vector of the fluid and u = (uy, Uy, u3), m/s
£ strain rate tensor

wu  effective dynamic viscosity, kg/(m-s)
Mo consistency index in power-law model

n  flow behaviour index of the non-Newtonian fluid
Re Reynolds number

L the dimension of the cavity, m
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